NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING |S
AND PROGRAMMING LANGUAGES

Runtime Verification with Predictive Semantics

Xian Zhang Martin Leucker ~Wei Dong

Norfolk, April 2012

Zhang et al. NFM'12 1/31

UNIVERSITAT ZU LOBECK 1
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

Zhang et al. NFM'12 2/31

Prag.a

NIVERSITAT ZU LUBECK
N
R

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE:

Runtime Verification (RV)

isp

Zhang et al.

NFM'12

2/31

arisin,

,

<
K .1
3 & UNIVERSITAT ZU LUBECK
3 INSTITUTE OF SOFTWARE ENGINEERING | S
P e AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions
» Simple verification technique

» Complementing

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing
» Model Checking

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

Zhang et al. NFM'12 2/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing

» Model Checking
> Testing

» Formal: w € L(y)

Zhang et al. NFM'12 2/31

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

Zhang et al. NFM'12

isp

3/31

nsir
5

&

UNIVERSITAT ZU LOBECK
15

Loy,
",
‘s

v
Prag.st’

INSTITUTE OF SOFTWARE EN:lNEElING
AND PROGRAMMING LANGU

" isp
Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

«O>» «Fr < > < » Q>

LI

i

3 S UNIVERSITAT ZU LOBECK

3 INSTITUTE OF SOFTWARE ENGINEERING
%, AND PROGRAMMING LANGUAGES

Runtime Verification for LTL

Observing executions/runs

Zhang et al.

NFM'12

isp

LI

i

3 S UNIVERSITAT ZU LOBECK

3 INSTITUTE OF SOFTWARE ENGINEERING
%, AND PROGRAMMING LANGUAGES

Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL

Zhang et al. NFM'12

isp

e UNIVE!{SIT&T Zu LUBECK H
S
FAHM\N LA'H‘ cu

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

¢ u= true|p |eVel|elUe|Xp |
false |—=p | oA@ | oR¢ | Xp |
-

Zhang et al. NFM'12

6/31

umv;ksm\r zu lUEECK 1
OF ARE RNRINERRING | S
AND PROGRAMMING Lqr Gl

Truth Domains

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Zhang et al. NFM'12 7/31

UNIVERSITAT ZU LUBECK

Truth Domains (cont.)

Lattice (cont.)
> A lattice is distributive, iff x 1 (y U z) = (x My) U (x M z), and, dually,
xU(yMNz)=(xUy) N (xUz).
> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite de Morgan lattice.

Zhang et al. NFM'12 8/31

UNIVERSITAT ZU LOBECK

INSTITUTE OF SOFTWARE ENGINEERING |S
AND PROGRAMMING LANGUAGES

LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . . . € SIS
Boolean constants Boolean combinations
[w |= true] o = T [wE=-ele = [wE=¢le
wifiselg = L wiEevidle = WkelgUi=dlg
wiEeAdle = WEelgnoi=dle

atomic propositions

T ifpca T ifp¢a
WEle = hem Wk -rle = e
L ifp & ag L ifp €ag
next X/weak next X TBD

until/release

T thereisak, 0 < k < [w] : [wF = ¥]e = Tand

[wlk=eUydle = foralllwith0§l<k:[wl =]l =T
TBD else
¢ R = —(-elU-vy)
Zhang et al. NFM'12

9/31

uNIkaSITM‘ zu LUBECK
TITUTE OF SGITWARE ENCINEERING IS
AND PROGRAMMING Lqr GUAGES

LTL on finite words

Application area: Specify properties of finite word

s

Zhang et al. NFM'12 10/31

uNIkaSn‘M’ zu LOBECK 1
OF SOFT MRLU ZINKERING |S
AND PROGRAMMING LANGU

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae overaword u = ag...a,_1 € X

next
Wlxg _ MR e
- otherwise
weak next
e Xelr = Wl iful £e

T otherwise

Zhang et al. NFM'12 11/31

isp

e

& UNIVERSITAT 2U LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

LTL on finite, but not completed words
Application area: Specify properties of finite but expanding word

VN,

v 1

NFM'12

Zhang et al.

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

Zhang et al. NFM'12 13/31

g NIkaSITM‘ zu LUBECK
3 OESOETWARE ENCINERRING |S
AND PROGRAMMING Lqr cu

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae overaword u = ag...a4,_1 € 2

next
= Xelr = W =gl ifu' #e
L otherwise
weak next
[ulXplr = W' Eelr ifu' #e

T? otherwise

Zhang et al. NFM'12 14/31

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Anticipatory Semantics

Consider possible extensions of the non-completed word

Zhang et al. NFM'12

isp

15/31

UNI\IU{SIT&T zZu LUBECK
Af D I’PI)LF MMING LA'H‘ L" GES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

> re-use existing semantics

Zhang et al. NFM'12

16/31

umv;ksmﬂ zu LUBECK 1
OF SOFTWARE ENCINEERING |S
AND PROGRAMMING LANGU

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

> re-use existing semantics
3-valued semantics for LTL over finite words
T ifVoeX¥:uc kg
MEel=¢ 1L ifVoeX¥ uocl ¢

7 else

Zhang et al. NFM'12

16/31

s,
S
s *
i
EH £ UNIVERSITAT ZU LUBECK
5 : INSTITUTE OF SOFTWARE ENCINEERING
2y, AND PROGRAMMING LANCUAGE:

Stay with T and L

qensir,

i

3 & UNIVERSITAT ZU LOBECK

% INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Go for T or L
» Consider XXXfalse

Zhang et al.

E XXXfalse

NFM'12

isp

g uNIkaSITM' zu LUBECK
NSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING Lqr GUAGES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Go for T or L
» Consider XXXfalse

Zhang et al.

a

E XXXfalse
E XXfalse
NFM'12

isp

17/31

UNIVERSITAT ZU LUBECK

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L

» Consider XXXfalse
€ E XXXfalse

a E XXfalse
ar = Xfalse

Zhang et al. NFM'12 17/31

uNIkaSn‘M‘ zu LUBECK
OESOETWARE ENCINERRING
CRAMMING Lqr cu

AND PR

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Go for T or L
» Consider XXXfalse

[e = XXXfalse] =

Zhang et al.

aa

aaa

m

isp

XXXfalse
XXfalse
Xfalse
false

if Vo € % : e0 = XXXfalse
if Vo € ¥¥ : eo = XXXfalse

else

NFM'12

17/31

nsir
5

&

UNIVERSITAT ZU LOBECK
15

Loy,
",
‘s

v
Prag.st’

INSTITUTE OF SOFTWARE EN:lNEElING
AND PROGRAMMING LANGU

cue isp
Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

«O>» «Fr < > < » Q>

3

k3
&
s

UNIVERSITAT ZU LOBECK

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

ISP
Predictive Semantics

Consider the program to monitor

Zhang et al.

NFM'12

19/31

-
S
g

UNIVERSITAT ZU LOBECK
NSTITUTE

OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

isp
LTL with Predictive Semantics
Basic idea
» finite words in RV:

prefixes of infinite, so-far unknown words

Zhang et al.

NFM'12

20/31

-
S
g

UNIVERSITAT ZU LOBECK
IN

TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG

isp
LTL with Predictive Semantics
Basic idea

» finite words in RV:

prefixes of infinite, so-far unknown words of our program

Zhang et al.

NFM'12

20/31

isp

g uNNEkslTM’ 2U LUBECK
OF SOFTWARE ENGINEERING
ES

TUTE
AND PROGRAMMING L!U\LU G

LTL with Predictive Semantics

Basic idea

» finite words in RV:
prefixes of infinite, so-far unknown words of our program

A first predictive semantics for LTL over finite words
if Vo € X¥ withuo € P:uoc = ¢

T
ME@=< L ifVoeX¥withuo € P:uc ¢
7 else

NFM'12

Zhang et al.

20/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

.
e oy,

o

Too much . ..

Answers model checking question!
T ifVoeX?withoceP:eoc =g

eEel=¢ L
7 else

ifVo € X witho € P:eo @

NFM'12

Zhang et al.

isp

21/31

& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

More reasonable ...

Use abstraction

» Use overabstraction of P

» with L(P) C L(P) C =

Zhang et al. NFM'12 22/31

g UNIVERSITAT zu Luntcx
F SOFTWARE ENGINEERING
s

TITUTE OF S
AND PROGRAMMING LM\LUALL

More reasonable ...

Use abstraction
» Use overabstraction of P

» with L(P) C L(P) C =¥

A general predictive semantics
T

mEel=4q L
? else

Zhang et al.

ifVo € X¥ withuo € P:uo = ¢
if Vo € ¥ withuo € P : uo & ¢

isp

22/31

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

How to get P?
> here, use simple analysis of P
» find for P sequential executions of actions over ¢’s alphabet

» obtain finite set R of

Zhang et al. NFM'12

isp

23/31

g uNIkaSITM' zu LUBECK
RSTITOTE OF SOFTWARE ENGINEERING IS
AND PROGRAMMING Lqr GUAGES

How to get P?
> here, use simple analysis of P

» find for P sequential executions of actions over ¢’s alphabet

» obtain finite set R of

Predictive semantics

T ifVoeRVYo € X% :uvo |= ¢

[wEX¢]=4 L ifVoeRYo €S uvo b o
7?7 else
NFM'12 23/31

Zhang et al.

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Really. ..
» find sequences av in P

» send av to monitor rather than only a

Zhang et al. NFM'12

isp

24/31

UNIVERSITAT ZU LOBECK 1
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

Presentation outline

Implementation and Experimental Results

Zhang et al. NFM'12 25/31

UNIVERSITAT ZU LUBECK
IRSTITUTE GF SOFTWARE ENGINEERING IS
AND PROGRAMMING Lqr GUAGES

Implementation

Instrumentation

> use of Aspect] (abc) to obtain events from program
» analysis of strong regions, CFG and PDG to find sequential executions

» use Transcut to inject predictive words

Zhang et al. NFM'12

26/31

S
& UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING

5. g1s¥ AND PROGRAMMING LANGUAGES

Implementation

A typical usage scenario of our prototype tool

Program
with
Predictive
Runtime
Monitoring
Capability

specify

Zhang et al. NFM'12

isp

27/31

g UNIVERSITAT zu Luntcx i S p
E

TUT SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Implementation

Property
G(creat e — G(updat e — = F(next)))

Strong Regions and PDG

1 Vector v = new Vector(col)

2 Iterator it = v.iterator();
3 v.add(object);

4 for(each element in col){

5 process each element ;
6)

T

it.next();

Zhang et al. NFM'12 28/31

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Experimental Results

Setup

» used Dacapo benchmarks

isp

Results
antlr eclipse fop hsqldb bloat lucene
class number 224 344 967 385 263 311
h -
g‘et od num-| o7 3978 6889 5859 3986 3013
er
predictable 0% (0/23) 7.92% 24.65% 28.23% 17.06% 25%
shadow ratio ? (53/391) (83/288) (45/124) (608/1495) (61/224)
predictable 0% (0/23) 3.33% 7.86% 11.83% 7.88% 7.3%
region ratio ? (22/360) (24/229) (14/93) (204/1091) (15/178)
Zhang et al. NFM'12

29/31

UNIVERSITAT ZU LOBECK
e

INSTITUTE OF SOFTWARE EN:INEERING
AND PROGRAMMING LANGU

cue isp
Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

«O>» «Fr < > < » Q>

UNIVERSITAT ZU LUBECK 1
INSTITUTE OF SOFTWARE ENGINEERING | S
AND PROGRAMMING LANGUAGES

That's it!

Thanks! - Questions?

Zhang et al. NFM'12 31/31

	Runtime Verification for LTL
	LTL with a Predictive Semantics
	Implementation and Experimental Results
	Conclusion

